INTRODUÇÃO:
Observe que, no conjunto dos números naturais, a operação de subtração nem sempre é possível.
exemplos:
a) 5 - 3 = 2 (possível: 2 é um número natural)
b) 9 - 9 = 0 ( possível: 0 é um número natural)
c) 3 - 5 = ? ( impossível nos números naturais)
Para tornar sempre possível a subtração, foi criado o conjunto dos números inteiros relativos,
-1, -2, -3,.........
lê-se: menos um ou 1 negativo
lê-se: menos dois ou dois negativo
lê-se: menos três ou três negativo
Reunindo os números negativos, o zero e os números positivos, formamos o conjunto dos números inteiros relativos, que será representado por Z.
Z = { .....-3, -2, -1, 0, +1, +2, +3,......}
Importante: os números inteiros positivos podem ser indicados sem o sinal de +.
Exemplo:
a) +7 = 7
b) +2 = 2
c) +13 = 13
d) +45 = 45
Sendo que o zero não é positivo nem negativo
EXERCICIOS:
1) Observe os números e diga:
-15, +6, -1, 0, +54, +12, -93, -8, +23, -72, +72
a) Quais os números inteiros negativos?R:
b) Quais são os números inteiros positivos?R:
2) Qual o número inteiro que não é nem positivo nem negativo?R:
3) Escreva a leitura dos seguintes números inteiros:
a) -8 =
b)+6 =
c) -10 =
d) +12 =
e) +75 =
f) -100 =
4) Quais das seguintes sentenças são verdadeiras?
a) +4 = 4 = ( )
b) -6 = 6 = ( )
c) -8 = 8 = ( )
d) 54 = +54 = ( )
e) 93 = -93 = ( )
5) As temperaturas acima de 0°C (zero grau) são representadas por números positivos e as temperaturas abaixo de 0°C, por números negativos. Represente a seguinte situação com números inteiros relativos:
a) 5° acima de zero =
b) 3° abaixo de zero =
c) 9°C abaixo de zero=
d) 15° acima de zero =
REPRESENTAÇÃO DOS NÚMEROS INTEIROS NA RETA
Vamos traçar uma reta e marcar o ponto 0. À direta do ponto 0, com uma certa unidade de medida, assinalemos os pontos que correspondem aos números positivos e à esquerda de 0, com a mesma unidade, assinalaremos os pontos que correspondem aos números negativos.
_I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6
exercícios
1) Escreva os números inteiros:
a) compreendidos entre 1 e 7
b) compreendidos entre -3 e 3
c) compreendidos entre -4 e 2
d) compreendidos entre -2 e 4
e) compreendidos entre -5 e -1
f) compreendidos entre -6 e 0
2) Responda:
a) Qual é o sucessor de +8?
b) Qual é o sucessor de -6?
c) Qual é o sucessor de 0 ?
d) Qual é o antecessor de +8?
e) Qual é o antecessor de -6?
f) Qual é o antecessor de 0 ?
3) Escreva em Z o antecessor e o sucessor dos números:
a) +4
b) -4
c) 55
d) -68
e) -799
f) +1000
NÚMEROS OPOSTOS E SIMÉTRICOS
Na reta numerada, os números opostos estão a uma mesma distancia do zero.
-I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6
Observe que cada número inteiro, positivo ou negativo, tem um correspondente com sinais deferentes
exemplo
a) O oposto de +1 é -1.
b) O oposto de -3 é +3.
c) O oposto de +9 é -9.
d) O oposto de -5 é +5.
Obsevação: O oposto de zero é o próprio zero.
EXERCÍCIOS
1) Determine:
a) O oposto de +5 =
b) O oposto de -9 =
c) O oposto de +6 =
d) O oposto de -6 =
e) O oposto de +18 =
f) O oposto de -15 =
g) O oposto de +234=
h) O oposto de -1000 =
COMPARAÇÃO DE NÚMEROS INTEIROS ,
Observe a representação gráfica dos números inteiros na reta.
-I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6
Dados dois números quaisquer, o que está à direita é o mair deles, e o que está à esquerda, o menor deles.
exemplos
a) -1 maior; -4, porque -1 está à direita de -4.
b) +2 maior; -4, porque +2 está a direita de -4
c) -4 menor -2 , porque -4 está à esquerda de -2.
d) -2 menor +1, porque -2 está à esquerda de +1.
exercícios
4) Qual é o número maior ?
a) +1 ou -10
b) +30 ou 0
c) -20 ou 0
d) +10 ou -10
e) -20 ou -10
f) +20 ou -30
g) -50 ou +50
h) -30 ou -15
5) Compare os seguintes pares de números, dizendo se o primeiro é maior, menor ou igual:
a) +2 e + 3
b) +5 e -5
c) -3 e +4
d) +1 e -1
e) -3 e -6
f) -3 e -2
g) -8 e -2
h) 0 e -5
i) -2 e 0
j) -2 e -4
K) -4 e -3
l) 5 e -5
m) 40 e +40
n) -30 e -10
o) -85 e 85
p) 100 e -200
q) -450 e 300
r) -500 e 400
6) Coloque os números em ordem crescente.
a) -9, -3, -7, +1, 0
b) -2, -6, -5, -3, -8
c) 5, -3, 1, 0, -1, 20
d) 25, -3, -18, +15, +8, -9
e) +60, -21, -34, -105, -90
f) -400, +620, -840, +1000, -100
7) Coloque os números em ordem decrescente:
a) +3, -1, -6, +5, 0
b) -4, 0, +4, +6, -2
c) -5, 1, -3, 4, 8
d) +10, +6, -3, -4, -9, +1
e) -18, +83, 0, -172, -64
f) -286, -740, +827, 0, +904
ADIÇÃO E SUBTRAÇÃO COM NÚMEROS INTEIROS
1) Adição de números positivos
A soma de dois números positivos é um número positivo.
EXEMPLO
a) (+2) + (+5) = +7
b) (+1) + (+4) = +5
c) (+6) + (+3) = +9
Simplificando a maneira de escrever
a) +2 +5 = +7
b) +1 + 4 = +5
c) +6 + 3 = +9
Observe que escrevemos a soma dos números inteiros sem colocar o sinal + da adição e eliminamos os parênteses das parcelas.
2) Adição de números negativos
A soma de dois números negativos é um número negativo
Exemplo
a) (-2) + (-3) = -5
b) (-1) + (-1) = -2
c) (-7) + (-2) = -9
Simplificando a maneira de escrever
a) -2 - 3 = -5
b) -1 -1 = -2
c) -7 - 2 = -9
Observe que podemos simplificar a maneira de escrever deixando de colocar o sinal de + na operação e eliminando os parênteses das parcelas.
EXERCÍCIOS
1) Calcule
a) +5 + 3 =
b) +1 + 4 =
c) -4 - 2 =
d) -3 - 1 =
e) +6 + 9 =
f) +10 + 7 =
g) -8 -12 =
h) -4 -15 =
i) -10 - 15 =
j) +5 +18 =
l) -31 - 18 =
m) +20 +40 =
n) -60 - 30 =
o) +75 +15 =
p) -50 -50 =
2) Calcule:
a) (+3) + (+2) =
b) (+5) + (+1) =
c) (+7) + ( +5) =
d) (+2) + (+8) =
e) (+9) + (+4) =
f) (+6) + (+5) =
g) (-3) + (-2) =
h) (-5) + (-1) =
i) (-7) + (-5) =
j) (-4) + (-7) =
l) (-8) + ( -6) =
m) (-5) + ( -6) =
8) Calcule:
a) ( -22) + ( -19) =
b) (+32) + ( +14) =
c) (-25) + (-25) =
d) (-94) + (-18) =
e) (+105) + (+105) =
f) (-280) + (-509) =
g) (-321) + (-30) =
h) (+200) + (+137) =
3) Adição de números com sinais diferentes
A soma de dois números inteiros de sinais diferentes é obtida subtraindo-se os valores absolutos, dando-se o sinal do número que tiver maior valor absoluto.
exemplos
a) (+6) + ( -1) = +5
b) (+2) + (-5) = -3
c) (-10) + ( +3) = -7
simplificando a maneira de escrever
a) +6 - 1 = +5
b) +2 - 5 = -3
c) -10 + 3 = -7
Note que o resultado da adição tem o mesmo sinal que o número de maior valor absoluto
Observação:
Quando as parcelas são números opostos, a soma é igual a zero.
Exemplo
a) (+3) + (-3) = 0
b) (-8) + (+8) = 0
c) (+1) + (-1) = 0
simplificando a maneira de escrever
a) +3 - 3 = 0
b) -8 + 8 = 0
c) +1 - 1 = 0
4) Um dos números dados é zero
Quando um dos números é zero , a soma é igual ao outro número.
exemplo
a) (+5) +0 = +5
b) 0 + (-3) = -3
c) (-7) + 0 = -7
Simplificando a maneira de escrever
a) +5 + 0 = +5
b) 0 - 3 = -3
c) -7 + 0 = -7
exercícios
1) Calcule:
a) +1 - 6 =
b) -9 + 4 =
c) -3 + 6 =
d) -8 + 3 =
e) -9 + 11 =
f) +15 - 6 =
g) -2 + 14 =
h) +13 -1 =
i) +23 -17 =
j) -14 + 21 =
l) +28 -11 =
m) -31 + 30 =
2) Calcule:
a) (+9) + (-5) =
b) (+3) + (-4) =
c) (-8) + (+6) =
d) (+5) + (-9) =
e) (-6) + (+2) =
f) (+9) + (-1) =
g) (+8) + (-3) =
h) (+12) + (-3) =
i) (-7) + (+15) =
j) (-18) + (+8) =
i) (+7) + (-7) =
l) (-6) + 0 =
m) +3 + (-5) =
n) (+2) + (-2) =
o) (-4) +10 =
p) -7 + (+9) =
q) +4 + (-12) =
r) +6 + (-4) =
3) Calcule
a) (+5 + (+7) =
b) (-8) + (-9) =
c) (-37) + (+35) =
d) (+10) + (-9) =
e) (-15 ) + (+15) =
f) (+80) + 0 =
g) (-127) + (-51) =
h) (+37) + (+37) =
i) (-42) + (-18) =
j) (-18) + (+17) =
l) (-18) + (+19) =
m) (-1) + (-42) =
n) (+325) + (-257) =
o) 0 + (-75) =
p) (-121) + (+92) =
q ) (-578) + (-742) =
r) (+101) + (-101) =
s) (-1050) + (+876) =