segunda-feira, 26 de junho de 2017

Operações com números racionais 7 º ANO

Operações com números racionais



Para as operações com números racionais relativos são validas as regras operatórias das frações e dos números inteiros relativos.


ADIÇÃO

Para adicionarmos números racionais relativos (na forma de fração) procedemos do seguinte modo:

1) Reduzimos (se necessário) as frações dadas ao mesmo denominador positivo.

2) Somamos os numeradores de acordo com a regra de sinais da adição de inteiros.

EXEMPLOS:

a) (-2/3) + (+1/2) =
     -2/3 + 1/2=
     (-4 + 3) / 6 = 
     -1/6

b) (+3/4) + (-1/2) = 
       3/4 - 1/2 =
       (3-2)/ 4 =
       1/4

c) (-4/5) + (-1/2) =
      -4/5 -1/2 =
      (-8 -5) / 10 =
       -13/10


SUBTRAÇÃO

Para encontrarmos a diferença entre dois números racionais, somamos o primeiro com o oposto do segundo

Exemplos

a) (+1/2) – (+1/4) = ½ -1/4 = 2/4 -1/4 = ¼
b) (-4/5) – (-1/2) = -4/5 + ½ = -8/10 + 5/10 = -3/10

MULTIPLICAÇÃO


Para multiplicarmos números racionais, procedemos do seguinte modo:

1) multiplicamos os numeradores entre si.

2) multiplicamos os denominadores entre si.

3) aplicamos as regras de sinais da multiplicação em Z.


EXEMPLOS :

a) (+1/7) . (+2/5) = +2/35

b) (-4/3) . (-2/7) = +8/21

c) (+1/4) . (-3/5) = -3/20

d) (-4) . (+1/5) = -4/5

DIVISÃO 


Para Calcularmos o quociente de dois números racionais relativos, em que o segundo é diferente de zero, procedemos do seguinte modo:

1) multiplicamos o dividendo pelo inverso do divisor.

2) aplicamos as regras da multiplicação de números racionais.

Exemplos

a) ( -7/9 ) : (+5/2) = (-7/9) . (+2/5) = -14/45
b) (-1/4) : (-3/7) = ( -1/4) . (-7/3) = +7/12
c) (+3/5) : (-2) = (+3/5) . -1/2) = -3/10

Nenhum comentário:

Postar um comentário

Potenciação e Radiciação de Números Racionais

  Potenciação Potenciação é a operação matemática utilizada para escrever de forma resumida números muito grandes, onde é feita a multiplica...